Aller au contenu

Le problème de Freudenthal


Recommended Posts

Publié le (modifié)
Heu... Pour être complet, je n'ai jamais réussi à décrocher l'agreg, et pour "vendeur de centrales nucléaires", ce n'est encore qu'un vague projet... ;)

L'agrégation..? comme dit Pennac, "je n'aime pas les jeux de hasard..." ;)mdr

Bon ok, après le jeu, c'est de tout faire pour que le facteur chance soit "réduit" (et puis dans l'absolu, il suffit de TOUT connaitre...) mais bon... c'est pas le débat... ;)mdr

Frantz, puis-je t'appeler Banach désormais..? ;)

Personne vexé bien entendu, bis' à tous!

Modifié par Monsieur M
Pas de pub non magique pour les membres du Cercle VM. Clique ici pour en savoir plus !
Publié le

Ok, parfait !... ;)

Frantz, puis-je t'appeler Banach désormais..? wink

Parce que je suis complet ?... Humm... Ce serait un bel hommage... Mais le problème c'est que je ne me considère pas comme normé... (Je n'aime pas les normes, sauf en maths... ;) )

J'ai par contre un faible pour la fougue, le génie et le romantisme de Galois... ;)

Publié le

Je n'ai jamais été dans les normes en étant dans l'énorme...alors ces histoires de normes équivalentes, je n'y crois qu'en Maths...

Comme aurait pu contrepèter Galois: "Je dois, ô cruel, croire au duel..."

Assez d'accord avec ton analyse de cet "algébriste" qui dans ses écrits, contrairement à Fermat, dit tout et ne tait rien... ;)

  • 9 années plus tard...
Publié le
Le 19/11/2008 à 19:41, Invité Dix heures dix a dit :

Bonsoir,

Voici le problème de Freudenthal

On choisit deux entiers X et Y, avec 1 < X < Y et X + Y ≤ 100.

On indique à Patricia le produit P de X et Y.

On indique à Sylvie la somme S de X et Y.

Voici ce qu'elles se disent:

Patricia : "Je ne sais pas quels sont les nombres X et Y."

Sylvie : "Je savais que vous ne connaissiez pas X et Y."

Patricia : "Eh bien alors, maintenant, je connais X et Y."

Sylvie : "Eh bien, moi aussi je les connais maintenant."

A vous de trouver X et Y.

Bonne chance

Quelqu'un a-t'il résolu cette énigme ?

Publié le

Attention spoiler (en même temps, ça fait 10 ans... 9_9) : la solution de ce problème, qui est apparemment devenu un classique, est disponible sur Wikipedia

En synthèse, pour ceux qui seraient curieux mais pas au point d'aller lire la solution détaillée :

Révélation
  • On peut déduire de la première affirmation que le produit P peut être obtenu à partir de plusieurs couples de valeurs X et Y (par exemple si P=18, alors soit X=3 et Y=6, soit X=2 et Y=9...)
  • On peut déduire de la seconde affirmation que la somme S ne peut se décomposer qu'en deux entiers dont le produit est ambigu (cf. point précédent). Les sommes qui respectent cette condition constituent un ensemble limité E = {11, 17, 23, 27, 29, 35, 37, 41, 47, 53}
  • Sachant cela, Patricia trouve la solution. Cela signifie que son produit P était ambigu, mais qu'il a une seule solution correspondant à une somme de l'ensemble E

Il s'avère que le seul produit vérifiant cette dernière condition est 52 = 13 x 4 (car 13 + 4 = 17).

En effet, 52 était un produit ambigu car il peut être décomposé en 13x4 ou en 26x2. Mais, si 17 (=13+4) appartient bien à E, 28 (=26+2) en est exclu.

Donc X=4 et Y=13

 

  • J'aime 2
  • Merci 1

L'important, c'est que ça valide !

Publié le

Alors en voici une similaire, plus simple:

En cours d'informatique, on cite parfois une énigme que peut résoudre un être humain et que pour l'instant aucun ordinateur ne peut résoudre. La voici :
Un homme demande à un autre l'âge de ses 3 filles.
L'autre répond : "la multiplication de leurs 3 âges donne le nombre 36."
- Je n'arrive pas à déduire leur âge ! répond le premier.
- L'addition de leur âge donne le même nombre que celui qui est inscrit au dessus de ce porche d'immeuble, juste en face de nous.
- Je n'arrive toujours pas à répondre ! dit le premier
- L'ainée est blonde.
- Ah oui, évidemment, je comprends leurs âges respectifs maintenant.

SourceLe livre secret des fourmis (B. Werber).

  • J'aime 2
  • Merci 1

We're looking for a better solution to the problem when we should be looking for a better problem to work on.

Publié le

Le raisonnement est très proche de celui du problème de Freudenthal, mais les nombres étant plus petits, le nombre de solutions est plus facile à énumérer.

Ne regardez pas la réponse tout de suite : la solution est assez facile à trouver si on a compris le raisonnement !

Révélation

 

Il faut donc trouver trois entiers dont le produit est 36.
Les triplets possibles sont : {1,1,36}, {1,2,18}, {1,3,12}, {1,4,9}, {1,6,6}, {2,2,9}, {2,3,6} et {3,3,4}.

Le premier homme ne trouve pas la solution alors qu'il connaît la somme des trois entiers. Donc il s'agit d'une somme qui correspond à au moins deux triplets.
Or, les sommes des triplets ci-dessus valent respectivement : 38, 21, 16, 14, 13, 13, 11 et 10.
La seule somme ambiguë est 13, qui se décompose en 1+6+6 ou en 2+2+9.

Puisqu'il y a une aînée, on ne peut retenir que 2+2+9. L'aînée à 9 ans, et les deux autres sœurs sont jumelles et ont toutes les deux 2 ans.

 

 

  • J'aime 2

L'important, c'est que ça valide !

Publié le
Il y a 4 heures, TanMai (Aurélien) a dit :

Alors en voici une similaire, plus simple:

En cours d'informatique, on cite parfois une énigme que peut résoudre un être humain et que pour l'instant aucun ordinateur ne peut résoudre. La voici :
Un homme demande à un autre l'âge de ses 3 filles.
L'autre répond : "la multiplication de leurs 3 âges donne le nombre 36."
- Je n'arrive pas à déduire leur âge ! répond le premier.
- L'addition de leur âge donne le même nombre que celui qui est inscrit au dessus de ce porche d'immeuble, juste en face de nous.
- Je n'arrive toujours pas à répondre ! dit le premier
- L'ainée est blonde.
- Ah oui, évidemment, je comprends leurs âges respectifs maintenant.

SourceLe livre secret des fourmis (B. Werber).

J'adore ce genre d'énigmes ! Tu en as d'autres, Aurélien ?

Rejoins la conversation !

Tu peux publier maintenant et t'enregistrer plus tard. Si tu as un compte, connecte-toi maintenant pour publier avec ton identité.

Invité
Répondre à ce sujet…

×   Vous avez collé du contenu avec mise en forme.   Restaurer la mise en forme

  Only 75 emoji are allowed.

×   Votre lien a été automatiquement intégré.   Afficher plutôt comme un lien

×   Votre contenu précédemment saisis, a été restauré..   Effacer le contenu

×   You cannot paste images directly. Upload or insert images from URL.

  • Pas de pub non magique pour les membres du Cercle VM. Clique ici pour en savoir plus !
  • Messages

    • Personnellement j’utilise de l’essence ZIPPO et ça marche super bien pour tout enlever 
    • "L’homme aux 3 visages samedi 9 août 2014, par Jean-Luc Galvan Ce documentaire réalisé par Jean-Luc Galvan en 2005 raconte l’histoire d’une quête : celle de  Jean-Luc Bigot, médecin de campagne dans le frontonnais, magicien, et fondateur de l’ONG Nomade qui intervient au Niger. "Comment le penser cet avenir quand la mort vous environne au quotidien ? Comment songer à s’installer, cultiver la terre, s’instruire, quand on a le ventre vide ? La force de ce documentaire , Jean-Luc Galvan l’a puisée dans le charisme fascinant de son personnage principal, dont le regard sur l’Afrique devient l’axe fondateur du film. Et sous nos yeux se dessine l’Afrique créatrice, forte, ingénieuse, habile, mais qui a besoin de ceux qui ont le ventre plein, et donc la tête libre, pour l’aider à se redresser. Jean-Luc Galvan, déjà auteur de nombreux documentaires, repense le genre du portrait : ici l’homme apparaît au travers de son action sur le monde. A suivre pas à pas ce médecin de campagne, à le voir récolter des idées, les mettre aussitôt en pratique, évaluer en permanence l’évolution de ses projets, nous sentons sa force et sa ténacité nous gagner. A écouter cet homme expliquer que la "La vie est magnifique, mais que le monde a des côtés moches, et que chacun peut aider un peu à le rendre meilleur", nous comprenons que nous pouvons faire partie de ceux qui agissent. Jean-Luc Galvan nous transmet avec conviction la puissance de Jean-Luc Bigot, "L’homme aux trois visages", et nous sortons galvanisés de ce documentaire, avec l’envie féroce d’aller nous aussi nous battre pour cette Afrique magnifique."  Virginie Mailles Viard / décembre 2005 -" http://www.parlemtv.fr/?L-homme-aux-3-visages Philippe 
    • Bonjour, Il me semble que sur le forum quelqu’un avait donné une astuce pour le splitting en utilisant un bol d’eau et un four micro onde. Mais je ne retrouve pas le message en question. Cela dit-il quelque chose à quelqu’un ? Merci.
  • Statistiques des membres

    • Total des membres
      8407
    • Maximum en ligne
      4524

    Membre le plus récent
    Maël GABORIT
    Inscription
  • Statistiques des forums

    • Total des sujets
      84.8k
    • Total des messages
      682.4k

×
×
  • Créer...