Aller au contenu
Pas de pub non magique pour les membres soutenant VM. Clique ici pour en savoir plus !
Invité

Le problème de Freudenthal

Recommended Posts

Le 15/11/2018 à 15:36, Alx a dit :

Attention spoiler (en même temps, ça fait 10 ans... 9_9) : la solution de ce problème, qui est apparemment devenu un classique, est disponible sur Wikipedia

 En synthèse, pour ceux qui seraient curieux mais pas au point d'aller lire la solution détaillée :

Masquer le contenu   Masquer le contenu
  • On peut déduire de la première affirmation que le produit P peut être obtenu à partir de plusieurs couples de valeurs X et Y (par exemple si P=18, alors soit X=3 et Y=6, soit X=2 et Y=9...)
  • On peut déduire de la seconde affirmation que la somme S ne peut se décomposer qu'en deux entiers dont le produit est ambigu (cf. point précédent). Les sommes qui respectent cette condition constituent un ensemble limité E = {11, 17, 23, 27, 29, 35, 37, 41, 47, 53}
  •  Sachant cela, Patricia trouve la solution. Cela signifie que son produit P était ambigu, mais qu'il a une seule solution correspondant à une somme de l'ensemble E

 Il s'avère que le seul produit vérifiant cette dernière condition est 52 = 13 x 4 (car 13 + 4 = 17).

En effet, 52 était un produit ambigu car il peut être décomposé en 13x4 ou en 26x2. Mais, si 17 (=13+4) appartient bien à E, 28 (=26+2) en est exclu.

Donc X=4 et Y=13

 

Je n'arrive pas à aboutir à E ... 😢 

Malgré l'article Wiki, je tombe sur un ensemble bien plus grand

Partager ce message


Lien à publier
Partager sur d’autres sites

Tu pourrais nous donner un exemple d'une valeur de E que tu as retenue mais qui ne figure pas dans l'ensemble donné sur Wikipedia ?

Partager ce message


Lien à publier
Partager sur d’autres sites

12:

10 + 2 et 8 + 4

Sachant que ce qui correspond en produit c'est:

20 (2*10 ou 5*4)

32 (2*16 ou 4*8)

 

Partager ce message


Lien à publier
Partager sur d’autres sites

Si Sylvie affirme "je savais que vous ne connaissiez pas X et Y", cela signifie que sa somme ne peut se décomposer que en entiers dont le produit est ambigu.

12 ne respecte pas cette condition, car il peut aussi se décomposer en 9+3, dont le produit serait 9x3=27, qui ne peut pas se décomposer en produit de deux autres entiers.

Si on avait dit à Sylvie "la somme X+Y vaut 12", elle n'aurait pas pu affirmer que Patricia ne pouvait pas connaître X et Y.

Partager ce message


Lien à publier
Partager sur d’autres sites
il y a 40 minutes, Alx a dit :

Si Sylvie affirme "je savais que vous ne connaissiez pas X et Y", cela signifie que sa somme ne peut se décomposer que en entiers dont le produit est ambigu.

 12 ne respecte pas cette condition, car il peut aussi se décomposer en 9+3, dont le produit serait 9x3=27, qui ne peut pas se décomposer en produit de deux autres entiers.

Si on avait dit à Sylvie "la somme X+Y vaut 12", elle n'aurait pas pu affirmer que Patricia ne pouvait pas connaître X et Y.

J'ai compris mon erreur.

Thanks :D

  • Merci 1

Partager ce message


Lien à publier
Partager sur d’autres sites
il y a 20 minutes, Nissim a dit :

J'ai compris mon erreur.

Thanks :D

En fait il faut faire un paquet d'allers retours.

Et bien comprendre qu'au début on cherche ceux qui ont plusieurs occurences, par deux fois, avec pour la deuxième fois une subtilité à garder en tête (le S1).

Puis on cherche celles qui n'ont qu'une occurence.

Et là on aboutit à la solution.

Même sur Excel c'est pas évident à modéliser.

Partager ce message


Lien à publier
Partager sur d’autres sites

Rejoins la conversation !

Tu peux publier maintenant et t'enregistrer plus tard. Si tu as un compte, connecte-toi maintenant pour publier avec ton identité.

Invité
Répondre à ce sujet…

×   Vous avez collé du contenu avec mise en forme.   Restaurer la mise en forme

  Only 75 emoji are allowed.

×   Votre lien a été automatiquement intégré.   Afficher plutôt comme un lien

×   Votre contenu précédemment saisis, a été restauré..   Effacer le contenu

×   You cannot paste images directly. Upload or insert images from URL.


×
×
  • Créer...