Aller au contenu
Pas de pub non magique pour les membres du Cercle VM. Clique ici pour en savoir plus !

Recommended Posts

Pas de pub non magique pour les membres du Cercle VM. Clique ici pour en savoir plus !
  • Réponses 39
  • Créé
  • Dernière réponse

Membres les + Actifs

Publié le
Comme je ne sais pas si c'est du troisième degré, il faut bien sur qu'il y ait une porte de sortie correcte ou bien une phase suivante qui fonctionne, pas juste finir sur "ça marche pas".

C'était effectivement un petit joke. ;)

Le spectateur ne connait pas les probabilités de réussite ni le fait que le tour ne reussisse pas "toujours".

Ce qu'il constate, c'est que quand tu lui a fait à lui, cela a raté.

Par contre, je plussois, dans certains types de "magie", le souvenir ou le ressenti sera plus marquant si le tour ne réussit pas "complètement".

Circulez !

Publié le
la probabilité qu'il y ait une coïncidence dépend du nombre de cartes envisagées dans chaque paquet :

par exemple pour deux paquets identiques qui seraient chacun composés de 2 cartes, la probabilité est de 1/2 = 0,5

sans entrer dans les détails voici ce qu'on obtient pour :

deux paquets de 3 cartes : 2/3 = 0,666...

deux paquets de 4 cartes : 5/8 = 0,625

deux paquets de 5 cartes : 19/30 = 0,63333....

deux paquets de 6 cartes : 91/144 = 0,6131944444...

etc.

les probabilités convergent (rapidement) vers 1 - 1/e où e est la constante de Neper (e = 2,74828....)

Pour deux paquets de 52 cartes on peut considérer que la probabilité qu'il y ait au moins une coïncidence est égale à 1-1/e c'est à dire 0,63212.... soit environ 63 %

Globalement, je m'attendais aussi à ce les probabilités constituent une suite convergente. Mais dans les résultats que tu annonces, il y a un truc qui me chagrine : la proba pour un paquet de 5 cartes est plus élevée que pour un paquet de 4. Il doit y avoir un bug quelque part...

Publié le (modifié)

tu remarqueras que la probabilité pour 2 cartes est plus faible que pour toutes les autres...

la parité du nombre de carte joue un certain rôle :

grosso-modo, lorsque le nombre de cartes est pair, les coïncidences sont légèrement moins fréquentes, mais lorsqu'il y en a, il y en a souvent plusieurs. (je sais pas si je suis clair?)

Quand le nombre de cartes est impair, les coïncidences sont un peu plus fréquentes mais souvent, il y a une seule coïncidence dans tout le paquet.

petits exemples :

il y a n! façons d'arranger les n cartes d'un paquet.

on peut appeler a, b, c, d, etc. les différentes cartes qui composent le paquet (elles sont toutes différentes comme dirait Kamel)

Avec 2 cartes, on obtient : 2 façons de les arranger :

ab ou ba.

admettons que le premier paquet (qui sera le paquet de référence) soit dans l'ordre ab.

le 2eme paquet est soit : ab (2 coïncidences) ou ba (0 coïncidence)

on peut dire qu'il y au total 2 coïncidences réparties dans deux paquets. mais cette répartition n'est pas "homogène" : 1 combinaison contient toutes les coïncidences et l'autre aucune.

Avec trois cartes, 3! = 6 façons de les arranger :

admettons que le paquet de référence soit dans l'ordre abc.

le 2eme paquet est soit :

abc (3 coïncidences)

acb (1 coïncidence)

bac (1 coïncidence)

bca (0 coïncidence)

cab (0 coïncidence)

cba (1 coïncidence)

on peut dire qu'il y au total 6 coïncidences (3+1+1+0+0+1 = 6) réparties dans 6 paquets. cette fois-ci la répartition est plus "éclatée" (3 paquets contiennent 1 seule coïncidence)

Avec 4 cartes, on obtient cette fois-ci, 4! = 24 paquets. Si tu écris comme je viens de le faire, toutes les combinaisons en prenant abcd comme paquet de référence, tu remarqueras qu'il y a 24 coïncidences (autant que de paquets) , elle sont plus regroupées (il y a beaucoup de paquets contenant 2 coïncidences cette fois-ci).

On pourrait exprimer la chose ainsi : pour un nombre de cartes impair, les coïncidences sont plus dispersées, et pour un nombre de cartes pair elles sont plus regroupées.

cela se traduit mathématiquement ainsi :

la probabilité se calcule ainsi pour un nombre n de cartes:

p = 1 - 1/2! + 1/3! - 1/4! + 1/5! - 1/6! ..... +ou- 1/n!

Modifié par danslesmanches

Le monde se divise en deux catégories : ceux qui ont un pistolet chargé, et ceux qui creusent. Toi, tu creuses ...

Publié le

Merci pour ces explications danslesmanches !

Entre ça et celles qui sont sur (ou en lien) le post dont friboudi parlait, je pense qu'on a de quoi faire :)

Par contre, saurais-tu me dire si la solution que je proposais est correcte même si moins élégamment écrite ?

Publié le
Bon je viens d'y réfléchir un peu, voici mon approche :)

Au 3ème tirage, en suivant le même raisonnement :

Proba(Tirage 3) = 1/50 - 1/51 - 1/52

Proba(Tirage 52) = 1/1 - (1/2 – 1/3 - … - 1/51 – 1/52)

je n'ai pas lu ton raisonnement qui amenait à ces résultats en détail (beaucoup de boulot) mais je tenais tout de même à répondre

tes deux calculs ne peuvent pas être justes pour les raisons suivantes :

Proba(Tirage 3) = 1/50 - 1/51 - 1/52 donne un nombre négatif...

Proba(Tirage 52) = 1/1 - (1/2 – 1/3 - … - 1/51 – 1/52) donne un nombre supérieur à 1

Le monde se divise en deux catégories : ceux qui ont un pistolet chargé, et ceux qui creusent. Toi, tu creuses ...

Rejoins la conversation !

Tu peux publier maintenant et t'enregistrer plus tard. Si tu as un compte, connecte-toi maintenant pour publier avec ton identité.

Invité
Répondre à ce sujet…

×   Vous avez collé du contenu avec mise en forme.   Restaurer la mise en forme

  Only 75 emoji are allowed.

×   Votre lien a été automatiquement intégré.   Afficher plutôt comme un lien

×   Votre contenu précédemment saisis, a été restauré..   Effacer le contenu

×   You cannot paste images directly. Upload or insert images from URL.




×
×
  • Créer...